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Details of Benchmark Approaches
In this section, we will introduce several benchmark ap-
proaches to deal with dual set multi-label learning problems.

Independent Decomposition
For each label set, the Independent Decomposition method
first constructs the corresponding multi-class training sets:

Dj = {(xi, yji )|1 ≤ i ≤ m, j ∈ {a, b}},

where yji ∈ Yj . Afterwards, a multi-class algorithm A can
be used to train a model

hj : X → Yj ,

for the set j, i.e.
hj ← A(Dj).

For an unseen instance x, the algorithm predicts its two la-
bels by querying each multi-class classifier and then com-
bining their predict labels as the final result:

[ha(x), hb(x)].

Obviously, the main drawback of Independent Decompo-
sition is that its classifiers are learned on each label set in-
dependently, so it neglects the relationship between the two
label sets.

Co-Occurrence Based Decomposition
Suppose label co-occurrence set C is used to record all the
label co-occurrence cases in the training set. At first, C is
empty. Then the algorithm will scan the training set, and for
i-th instance, if (yai , y

b
i ) does not appear in C, it will be added

in C. Then, the original training set will be:

D = {(xi, ti)|1 ≤ i ≤ m},

where ti = 1, · · · , |C| is the new class label. Next, a multi-
class algorithm A can be used to train a classifier:

h← A(D),

predictions are made by querying the multi-class classifier.
Co-Occurrence Based Decomposition suffers from two

problems. First, the number of co-occurrence cases could be
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large. An extreme case is that each label in Ya co-occur with
each label in Yb, which will result in all L1 ×L2 classes for
the transformed multi-class problem, where L1, L2 refer to
sizes of dual label sets, respectively. This will lead to insuf-
ficient training data for each class, and low efficiency of the
overall task. Second, this method can only predict the label
combinations which have been occurred in the training set,
and thus may lead to poor performance on the testing set.

Label Stacking
Given the training set D = {(xi, yai , ybi )|1 ≤ i ≤ m}, with-
out loss of generality, we assume that L1 ≥ L2, and a multi-
class algorithm A is applied to learn two classifiers:

hb ← A({(xi, ybi )|1 ≤ i ≤ m}),
ha ← A({([xi, ybi ], yai )|1 ≤ i ≤ m}),

where [x1, x2] concatenates x1 and x2. For an unseen in-
stance x, its second label is predicted by

hb(x),

then its first label is predicted by

ha([x, hb(x)]).

Here the prediction result hb(x) is a 0-1 matrix, where each
1 indicates that the instance is associated with certain label,
0 otherwise.

Label Stacking differs from Independent Decomposition
in its ability to exploit inter-set label relationship. More-
over, different to Co-Occurrence Based Decomposition, La-
bel Stacking only makes one label set help the other one
rather than making two sets help each other. The reason of
the assumption L1 ≥ L2 lies in the fact that generally multi-
class learning with fewer classes performs better, which is
able to provide better pseudo-labels for the other label set.

Proofs for Theoretical Results
In this part, we provide detailed proofs for theoretical results
in the main paper.

Proof for Theorem 1
For the case with dual sets of labels, we follow (Mohri, Ros-
tamizadeh, and Talwalkar 2012) to define the following mar-
gin:



Definition 1. A hypothesis h is defined based on a scoring
function g : X ×Y → R. Then, the label associated to point
x is the one resulting in the largest score g(x, y), which de-
fines the following mapping from X to Y ,

h : x→ arg max
y∈Y

g(x, y),

then definition of the margin ρh(x, y) of the function g at a
labeled example (x, y),

ρ̄h(x, y) = g(x, y)−max
y′ 6=y

g(x, y′).

Similarly, we define the margin for directly learning from
all labels as follows:
Definition 2. A hypothesis h is defined based on a scoring
function g : X × [Ya×Yb]→ R. Then definition of the mar-
gin ρh(x, y) of the function g at a labeled example (x, y),
y = [ya, yb],

¯̄ρh(x, y) = min{g(x, ya), g(x, yb)}− max
y′ 6=ya∧y′ 6=yb

g(x, y′).

Based on Definition 1 and 2 given above, we have the
following theorem:
Theorem 1. For dual-set multi-label learning problems, ha
and hb are classifiers trained on the instance space X and
label space Ya, Yb respectively. h is a classifier trained di-
rectly from X × [Ya × Yb], namely,

h : x→ arg max
ya,yb∈[Ya×Yb]

h(x, y),

where y = [ya, yb], then margin of learning from dual label
set is larger than that of directly learning from all labels:

min{ρ̄ha(x, ya), ρ̄hb(x, yb)} ≥ ¯̄ρh(x, y).

Proof. From the definition

¯̄ρh(x, y) = min{ha(x, ya), hb(x, yb)}− max
y′ 6=ya∧y′ 6=yb

h(x, y′),

without loss of generality, we could assume that
ha(x, ya) ≤ hb(x, yb), then

¯̄ρh(x, y) = ha(x, ya)− max
y′ 6=ya∧y′ 6=yb

h(x, y′)

≤ ha(x, ya)− max
y′ 6=ya∧y′∈[L1]

ha(x, y′)

= ρ̄ha(x, ya).

Similarly, we could also prove that ¯̄ρh(x, y) ≤ ρ̄hb(x, yb),
thus we have

min{ρ̄ha(x, ya), ρ̄hb(x, yb)} ≥ ¯̄ρh(x, y).

Remark. From Theorem 1, we can see that the margin of
h is bounded by the minimum of margin of ha and hb. The
margin is the larger the better. Thus, this bound implies the
effectiveness of splitting the whole label set into two disjoint
label sets. This exactly accords with our intuition, that we
should consider the hierarchical structure in label sets.

Proofs for Theorem 2
Consider the approach that splits label sets into dual sets, we
name it as splitting approach:

hspl(x) = [ha(x), hb(x)],

then, we give the definitions of empirical margin loss and
risks based on hamming loss as follows,

Definition 3. (Empirical Margin Loss (Mohri, Ros-
tamizadeh, and Talwalkar 2012))

R̂ρ(h) =
1

m

m∑
i=1

Φρ(ρh(xi, yi)),

where Φρ(·) is the margin loss function defined as,

Φρ =


0, if ρ ≤ x
1− x/ρ, if 0 ≤ x ≤ ρ
1. if x ≤ 0

Remark. Since margin loss function is a monotonously
non-increasing function, it means that the larger margin is,
the less loss will be.

Definition 4. (Risks Based on Hamming Loss)

R(h) = E(x,y)∼D

[
1

L1 + L2

L1+L2∑
`=1

[[h`(x) 6= y`]]

]
,

R(ha) = E(x,ya)∼D

[
1

L1

L1∑
`=1

[[ha` (x) 6= ya` ]]

]
,

R(hb) = E(x,yb)∼D

[
1

L2

L2∑
`=1

[[hb`(x) 6= yb` ]]

]
.

And we have the key observation:

Observation. The losses of these approaches satisfy,

[[h`(x) 6= y`]] ≤ max{[[ha` (x) 6= ya` ]], [[hb`(x) 6= yb` ]]}.

Proof. Since [[·]] is either 1 or 0, we only need to bound the
case when the right hand side is equal to 0.

As we know that h(x) = [ha(x), hb(x)] and y = [ya, yb],
when [[ha` (x) 6= ya` ]] = 0 ∧ [[hb`(x) 6= yb` ]] = 0, we have left
hand side as [[h`(x) 6= y`]] = 0.

Based on Definition 3 and 4, we have the following gen-
eralization bound of the approach that splits the total label
set into dual label sets:

Theorem 2. Let H = {(x, ya, yb) ∈ X × [Ya × Yb] →
wTφ(x)|

∑L1+L2

`=1 ‖w‖2H ≤ Λ2} be a hypothesis set with
ya = 1, · · · , L1, y

b = 1, · · · , L2, where φ : X → H is a
feature mapping induced by some positive definite kernel κ.
Assume that S ⊂ {x : κ(x,x) ≤ r2}, and fix ρ > 0, then
for any δ > 0, with probability at least 1 − δ, the following
generalization bound holds for all hspl = [ha, hb] ∈ H:

R(hspl) ≤ R̂ρ(hspl)+
2rΛ

ρ

√
max{L1, L2}

m
+3

√
log(2/δ)

m
.



To prove Theorem 2, we firstly provide Lemma 1, Lemma
2, and Lemma 3, which play importance roles in the follow-
ing proofs.
Lemma 1. The risks of the approaches satisfy,

R(hspl) ≤ max{R(ha), R(hb)}.

Proof.

R(hspl) = E(x,y)∼D

[
1

L1 + L2

L1+L2∑
`=1

[[hspl` (x) 6= y`]]

]

=
1

L1 + L2
E(x,y)∼D

[
L1∑
`=1

[[hspl` (xi) 6= yi,`]]

]

+
1

L1 + L2
E(x,y)∼D

[
L1+L2∑
`=L1+1

[[hspl` (xi) 6= yi,`]]

]

=
L1

L1 + L2
R(ha) +

L2

L1 + L2
R(hb)

≤ 1

L1 + L2
max{R(ha), R(hb)}(L1 + L2)

= max{R(ha), R(hb)}.

Lemma 2. The empirical risks of these approaches satisfy,

max{R̂ρ(ha), R̂ρ(h
b)} ≤ R̂ρ(hspl).

Proof.

max{R̂ρ(ha), R̂ρ(h
b)}

=
1

m
max

{
m∑
i=1

Φρ(ρ̄ha(xi, y
a
i )),

m∑
i=1

Φρ(ρ̄hb(xi, y
b
i ))

}

≤ 1

m

m∑
i=1

max
{

Φρ(ρ̄ha(xi, y
a
i )),Φρ(ρ̄hb(xi, y

b
i ))
}

≤ 1

m

m∑
i=1

Φρ(¯̄ρhspl(xi, yi)) = R̂ρ(h
spl).

The last inequality holds due to Theorem 1 and the fact mar-
gin loss function Φ(·) is monotonically non-increasing.

Based on similar proof skills in (Lei et al. 2015), we
use Gaussian Complexity (Bartlett and Mendelson 2002) to
prove a bound which exhibits a radical dependence on the
maximal number of labels.
Lemma 3. Let H = {(x, y) ∈ X × Y →
wTφ(x)|

∑L
`=1‖w‖2H ≤ Λ2} be a hypothesis set with

y = 1, · · · , L, where φ : X → H is a feature map-
ping induced by some positive definite kernel κ. Assume that
S ⊂ {x : κ(x,x) ≤ r2}, and fix ρ > 0, then, for any δ > 0,
with probability at least 1 − δ, the following generalization
bound holds for all h ∈ H ,

R(h) ≤ R̂ρ(h) +
2rΛ

ρ

√
L

m
+ 3

√
log(2/δ)

m
.

Now, we proceed to prove Theorem 2.

Proof.

R(hspl) ≤ max{R(ha), R(hb)}

≤ max

{
R̂ρ(h

a) +
2rΛ

ρ

√
L1

m
+ 3

√
log(2/δ)

m
,

R̂ρ(h
b) +

2rΛ

ρ

√
L2

m
+ 3

√
log(2/δ)

m

}
≤ max{R̂ρ(ha), R̂ρ(h

b)}

+
2rΛ

ρ

√
max{L1, L2}

m
+ 3

√
log(2/δ)

m

≤ R̂ρ(hspl) +
2rΛ

ρ

√
max{L1, L2}

m
+ 3

√
log(2/δ)

m
.

Remark. From Theorem 2, we can see that it makes sense
to split label sets to deal with dual-set multi-label learning
since the convergence rate of generalization error is standard
asO(1/

√
m). Besides, the error bound exhibits a radical de-

pendence on the maximal number of labels in dual sets. This
also implies a relatively balanced splitting on the label sets
may improve the performance.

Details of Datasets
In this section, we introduce detailed information about the
collection and process of all three datasets mentioned in
main paper.

Calligrapher-Font Joint Classification
The first dataset is Calligrapher-Font dataset and this is the
largest dataset of this paper, whose task is to predict the cal-
ligrapher and font simultaneously given images of Chinese
characters. The dataset comes from 31 different calligraphy
works written by 14 ancient famous Chinese calligraphers in
5 kinds of fonts. Each calligraphy work contains hundreds of
Chinese characters. Overall, there are 23195 Chinese char-
acters in the dataset. Every Chinese character corresponds
to a grey image. They are processed to be 100 × 100 pix-
els black-and-white images in order to remove the effect of
brightness and size. Finally they are extracted Dense SIFT
(Lowe 2004) feature, which are set to be 512 dimensions.

Brand-Type Joint Classification
The second dataset is Brand-Type dataset, which is aimed at
predicting the car brand and type given the car image. The
dataset comes from 2247 colorful car images collected on
the Internet, which belongs to 7 brands and 3 types. All im-
ages are processed to be 224×224×3 pixels images in order
to fit the input size of the Vgg-Verydeep-16 net (Simonyan
and Zisserman 2014). Then the net is used to extract CNN
feature for each image, which are 4096 dimensions. In de-
tail, the output of softmax layer before the last layer is used
as the feature vector.



Frequency-Gender Joint Classification
The last dataset is frequency-gender dataset, whose task is,
given voice feature information, to predict the frequency
range of voice and the gender of the speaker simultaneously.
It comes from www.primaryobjects.com and its original job
is to identify the gender of a voice. There are 3168 voice in-
stances marked with male or female as their labels and 20
voice attributes are used to describe them. Among the at-
tributes, we adapt the mean frequency to be our first label
set. Since the human voice frequency ranges from 0Hz to
280Hz, we cut the range into 7 parts, every 40Hz for an in-
terval, and label the mean frequency from 1 to 7. Very few
instances are labeled as 1 or 2, i.e., lower than 80Hz, which
are removed in order to avoid serious class imbalance prob-
lems. In this way, we get the first label set, whose number
of class is 5. And we directly take the original male/female
label as our second label set.
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